

Community Hydrologic Prediction System CHPS

NWS Workshop on Hydrologic Forecasting
Prague Campus
Czech University of Agriculture
June 20-24, 2005

CHPS - Why?

- Infuse new science into NWS operations
- Provide access to an expanded set of hydrometeorologic, hydrologic, and hydraulic models
- Enable fine space and time scale distributed hydrologic modeling
- Introduce parallel processing for ensemble predictions
- Support concurrent, distributed development
- Encourage scientific collaboration

Service Oriented Architecture

Service Oriented Architecture (SOA)

- Services encapsulate complex processes and systems, permitting controlled change and continuous improvement of the underlying implementations
- Contrast with the current NWS River Forecast System (NWSRFS), a procedural, monolithic application
 - NWSRFS traded architectural flexibility for performance
- Water Predictions CHPS will attempt to attain both

Benefits of an SOA

- Data and algorithms are structured and identified through service protocols
 - CHPS could provide hydrologic algorithms to the research community because services can be accessed by whomever has appropriate rights
 - Explicitly supports distributed R&D and distributed processing
- Time from research to operations is reduced because adding a new algorithm or data service does not impact existing services - regression testing minimized

CHPS - How?

- Adapt SOA to support NWS Hydrologic Forecasting business
 - Incremental development/deployment
 - Overall architectural design
 - Proof-of-concept build/test
- NWS river forecast operations continue every day while evolving to CHPS architecture
 - Expand design element by element
 - Deliver new functional/data components as soon as they're ready
- Provides a community hydrologic testbed with access to operational data

CHPS - When?

- Develop Vision for evolving NWSRFS November 2002
- Proof-of-concept workflow management service demonstrated August 2003
- Architectural overview January 2004
- River, Reservoir, and Snow (RRS) data service design May 2004
- RRS prototype development Fall 2004
- Deploy CHPS-RRS for River Forecast Center beta testing 2005
- Find opportunities to add new algorithm services (i.e., USACE ResSIM) – as resources allow

CHPS – Architectural overview

CHPS - Display, Algorithm, Control, Security

DOA!

CHPS – Data Services

NO ATMOSPHE

- "Service": component that executes within one or more application servers
- "Local": within one system, or on local LAN
- "Remote": on a LAN not physically connected to a local CPU

CHPS – Expanded Opportunities

- Once the SOA strategy is proven in NWS river forecast operations CHPS can support concurrent development of new algorithm, data, or display services
- CHPS enables additional opportunities for collabortion with Federal water, private sector, and University partners

